organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-{2-[2-(Diphenvlmethylene)hydrazinyl]thiazol-4-vl}-2H-chromen-2-one

Afsheen Arshad,^a Hasnah Osman,^a Kit Lam Chan,^b Chin Sing Yeap^c[‡] and Hoong-Kun Fun^{c*}§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 15 June 2010; accepted 18 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.125; data-to-parameter ratio = 14.7.

In the title compound, C₂₅H₁₇N₃O₂S, the coumarin ring system is essentially planar with a maximum deviation of 0.019 (2) Å. A weak intramolecular C-H···O hydrogen bond stabilizes the molecular structure, so that the coumarin plane is approximately coplanar with the thiazole ring, making a dihedral angle of 2.5 $(10)^{\circ}$. The two phenyl rings are nearly perpendicular to each other, with a dihedral angle of $81.44 (12)^{\circ}$. In the crystal structure, the molecules are linked into an infinite chain along the b axis by intermolecular C- $H \cdots O$ hydrogen bonds. Weak $C - H \cdots \pi$ interactions are observed between the chains.

Related literature

For applications of coumarin derivatives, see: Tassies et al. (2002); Laffitte et al. (2002); Weber et al. (1998); Finn et al. (2004); Kimura et al. (1985). For applications of aminothiazoles derivatives, see: Hiremath et al. (1992); Karah et al. (1998); Jayashree et al. (2005). For related structures, see: Arshad, Osman, Chan et al. (2010a,b); Arshad, Osman, Lam et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). The syntheses of benzophenone thiosemicarbazone and $3-(\omega$ bromoacetyl)coumarin are described by Lobana et al. (2006) and Siddiqui et al. (2009), respectively.

Experimental

Crystal data C25H17N3O2S $M_r = 423.48$ Monoclinic, $P2_1/c$ a = 13.8705 (18) Åb = 12.9101 (17) Åc = 11.8534 (16) Å $\beta = 107.563 (2)^{\circ}$

 $V = 2023.6 (5) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^{-1}$ T = 100 K $0.28 \times 0.13 \times 0.04 \text{ mm}$

17920 measured reflections

 $R_{\rm int} = 0.067$

4181 independent reflections

2909 reflections with $I > 2\sigma(I)$

atoms treated by a mixture of

independent and constrained

Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.949, \ T_{\max} = 0.993$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a
$wR(F^2) = 0.125$	independent and co
S = 1.04	refinement
4181 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
284 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C14-C19 and C2-C7 benzene rings, respectively.

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C6-H6A\cdotsO1^{i}$	0.93	2.46	3.377 (3)	168
$C11 - H11A \cdots O2$	0.93	2.30	2.857 (3)	118
$C21 - H21A \cdots Cg1^{ii}$	0.93	2.49	3.387 (3)	162
$C24 - H24A \cdots Cg2^{iii}$	0.93	2.78	3.536 (3)	139

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{5}{2}$; (ii) -x + 1, -y, -z + 2; (iii) -x, -y, -z + 2.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

AA, HO and KLC thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant (RU/1001/ PKIMIA/811133) to conduct this work. AA thanks the Pakistan Government and PCSIR for financial scholarship support. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

[‡] Thomson Reuters ResearcherID: A-5523-2009.

[§] Thomson Reuters ResearcherID: A-3561-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2564).

References

- Arshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, 01491–01492.
- Arshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010b). Acta Cryst. E66, 01498–01499.
- Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, 01446–01447.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Finn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett. 214, 43-54.
- Hiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc. 69, 87–89.

- Jayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem. 17, 2093–2097.
- Karah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res. 48, 758–763.
- Kimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224–229.
- Laffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). *Biochemistry*, **41**, 7217–7223.
- Lobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. D. & Zeller, M. (2006). Polyhedron, 25, 2755–2763.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). *Haematologica*, 87, 1185–1191.
- Weber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol. 99, 193–206.

Acta Cryst. (2010). E66, o1788-o1789 [doi:10.1107/S1600536810023627]

3-{2-[2-(Diphenylmethylene)hydrazinyl]thiazol-4-yl}-2H-chromen-2-one

A. Arshad, H. Osman, K. L. Chan, C. S. Yeap and H.-K. Fun

Comment

Coumarin derivatives having pronounced biological activities are used as anticoagulants (Tassies *et al.*, 2002), antibacterial (Laffitte *et al.*, 2002), cytotoxic (Weber *et al.*, 1998), free radical scavengers (Finn *et al.*, 2004) and enzyme inhibiting (Kimura *et al.*, 1985) agents. Moreover, aminothiazoles derivatives have been reported to exhibit significant antifungal (Hiremath *et al.*, 1992), anti-tuberculosis (Karah *et al.*, 1998) and anti-inflammatory (Jayashree *et al.*, 2005) activities. The title compound is a new coumaringl thiazolyl hydrazone derivative. We present here its crystal structure.

The geometry parameters of the title compound (Fig. 1) are comparable to those related structures (Arshad, Osman, Chan *et al.*, 2010*a,b*; Arshad, Osman, Lam *et al.*, 2010). The coumarin group is essentially planar (O1/C1–C9) with a maximum derivation of 0.019 Å at atom C7. The mean plane is approximately coplanar with the thiazole ring (C10–C11–S1–C12–N1) with a dihedral angle being 2.5 (10)°. The other two benzene rings are nearly perpendicular to each other with a dihedral angle being 81.44 (12)°.

In the crystal structure, the molecules are linked into infinite chains along *b* axis by the intermolecular C6—H6A···O1 hydrogen bonds and stabilized by the weak C—H··· π interactions (Fig. 2, Table 1). A weak intramolecular C11—H11A···O2 hydrogen bond stabilizes the molecular structure.

Experimental

Benzophenone thiosemicarbazone (Lobana *et al.*, 2006) and 3-(ω -bromoacetyl)coumarin (Siddiqui *et al.*, 2009) were synthesized as reported in the literature. A solution of 3-(ω -bromoacetyl)coumarin (2.5 mmol) and benzophenone thiosemicarbazone (2.5 mmol) in chloroform-ethanol (2:1) was refluxed for 1 h. Precipitates formed were filtered and boiled with water containing sodium acetate. The title compound was purified by recrystallization with ethanol-chloroform (1:3) as dark brown feather-like crystals.

Refinement

H1N2 hydrogen atom was located in a difference Fourier map and was refined freely. The rest of H atoms were positioned geometrically (C–H = 0.93 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2. The crystal packing of title compound, viewed down the b axis, showing the molecules are linked into chains along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

3-{2-[2-(Diphenylmethylene)hydrazinyl]thiazol-4-yl}-2H-chromen-2-one

$C_{25}H_{17}N_3O_2S$	F(000) = 880
$M_r = 423.48$	$D_{\rm x} = 1.390 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2695 reflections
a = 13.8705 (18) Å	$\theta = 2.2 - 25.7^{\circ}$
b = 12.9101 (17) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 11.8534 (16) Å	T = 100 K
$\beta = 107.563 \ (2)^{\circ}$	Plate, brown
$V = 2023.6 (5) \text{ Å}^3$	$0.28\times0.13\times0.04~mm$
Z = 4	

Data collection

Bruker APEXII DUO CCD area-detector diffractometer	4181 independent reflections
Radiation source: fine-focus sealed tube	2909 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.067$
ϕ and ω scans	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -17 \rightarrow 17$
$T_{\min} = 0.949, T_{\max} = 0.993$	$k = -16 \rightarrow 16$
17920 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.125$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0488P)^2 + 1.1918P]$ where $P = (F_o^2 + 2F_c^2)/3$
4181 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

284 parameters	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.27268 (5)	0.29137 (5)	0.91250 (6)	0.02688 (18)
O1	0.03690 (14)	0.49303 (13)	1.21227 (16)	0.0322 (5)
02	0.12420 (15)	0.53063 (13)	1.09019 (17)	0.0375 (5)
N1	0.18366 (15)	0.20621 (15)	1.05262 (17)	0.0216 (4)
N2	0.25985 (16)	0.08768 (16)	0.95524 (19)	0.0257 (5)
N3	0.32315 (15)	0.07961 (15)	0.88597 (17)	0.0230 (5)
C1	0.09314 (19)	0.46244 (19)	1.1393 (2)	0.0267 (6)
C2	-0.00360 (19)	0.42446 (19)	1.2744 (2)	0.0265 (6)
C3	-0.0574 (2)	0.4642 (2)	1.3458 (3)	0.0377 (7)
H3A	-0.0672	0.5352	1.3499	0.045*
C4	-0.0961 (2)	0.3960 (2)	1.4110 (3)	0.0355 (7)
H4A	-0.1313	0.4218	1.4604	0.043*
C5	-0.08363 (19)	0.2904 (2)	1.4042 (2)	0.0274 (6)
H5A	-0.1104	0.2456	1.4485	0.033*
C6	-0.03123 (17)	0.25172 (19)	1.3315 (2)	0.0225 (5)
H6A	-0.0231	0.1805	1.3266	0.027*
C7	0.00990 (17)	0.31838 (18)	1.2649 (2)	0.0209 (5)
C8	0.06701 (18)	0.28439 (18)	1.1895 (2)	0.0213 (5)
H8A	0.0760	0.2137	1.1817	0.026*
С9	0.10832 (17)	0.35054 (18)	1.1294 (2)	0.0212 (5)
C10	0.16787 (18)	0.31334 (18)	1.0546 (2)	0.0209 (5)
C11	0.20939 (19)	0.37041 (19)	0.9838 (2)	0.0268 (6)
H11A	0.2042	0.4420	0.9753	0.032*
C12	0.23598 (18)	0.18608 (18)	0.9809 (2)	0.0225 (5)
C13	0.35407 (18)	-0.01140 (18)	0.8675 (2)	0.0210 (5)
C14	0.42271 (18)	-0.01483 (18)	0.7927 (2)	0.0213 (5)
C15	0.42459 (18)	0.06486 (19)	0.7143 (2)	0.0232 (5)
H15A	0.3784	0.1189	0.7037	0.028*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C16	0.49430 (19)	0.0646 (2)	0.6520 (2)	0.0261 (6)
H16A	0.4949	0.1184	0.6000	0.031*
C17	0.5631 (2)	-0.0155 (2)	0.6670 (2)	0.0288 (6)
H17A	0.6097	-0.0156	0.6247	0.035*
C18	0.56302 (19)	-0.0957 (2)	0.7446 (2)	0.0284 (6)
H18A	0.6098	-0.1492	0.7549	0.034*
C19	0.49287 (18)	-0.09584 (19)	0.8069 (2)	0.0237 (5)
H19A	0.4923	-0.1500	0.8585	0.028*
C20	0.33051 (17)	-0.11039 (18)	0.9191 (2)	0.0210 (5)
C21	0.36721 (19)	-0.12891 (19)	1.0402 (2)	0.0268 (6)
H21A	0.4018	-0.0770	1.0907	0.032*
C22	0.3526 (2)	-0.2240 (2)	1.0859 (2)	0.0288 (6)
H22A	0.3778	-0.2360	1.1669	0.035*
C23	0.30028 (19)	-0.3019 (2)	1.0112 (2)	0.0273 (6)
H23A	0.2916	-0.3664	1.0417	0.033*
C24	0.26132 (19)	-0.28293 (19)	0.8913 (2)	0.0282 (6)
H24A	0.2250	-0.3342	0.8411	0.034*
C25	0.27632 (18)	-0.18767 (19)	0.8457 (2)	0.0238 (5)
H25A	0.2498	-0.1753	0.7649	0.029*
H1N2	0.2549 (19)	0.034 (2)	1.003 (2)	0.027 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0327 (4)	0.0239 (3)	0.0311 (4)	-0.0054 (3)	0.0203 (3)	-0.0020 (3)
01	0.0445 (11)	0.0185 (9)	0.0433 (11)	0.0005 (8)	0.0277 (10)	-0.0013 (8)
O2	0.0531 (13)	0.0196 (9)	0.0524 (12)	-0.0013 (9)	0.0350 (11)	0.0020 (9)
N1	0.0227 (10)	0.0206 (10)	0.0244 (11)	0.0010 (9)	0.0116 (9)	-0.0006 (9)
N2	0.0305 (12)	0.0211 (11)	0.0344 (12)	0.0012 (9)	0.0230 (11)	0.0009 (10)
N3	0.0245 (11)	0.0237 (11)	0.0260 (11)	-0.0008 (9)	0.0153 (10)	-0.0015 (9)
C1	0.0319 (14)	0.0208 (13)	0.0312 (14)	0.0010 (11)	0.0153 (13)	-0.0020 (11)
C2	0.0302 (14)	0.0219 (13)	0.0313 (14)	-0.0006 (11)	0.0153 (12)	0.0014 (11)
C3	0.0533 (19)	0.0200 (13)	0.0517 (18)	0.0034 (13)	0.0336 (16)	-0.0029 (13)
C4	0.0405 (16)	0.0312 (15)	0.0456 (17)	0.0047 (12)	0.0292 (15)	-0.0048 (13)
C5	0.0262 (13)	0.0299 (14)	0.0304 (14)	-0.0022 (11)	0.0150 (12)	0.0003 (11)
C6	0.0223 (12)	0.0202 (12)	0.0254 (13)	-0.0009 (10)	0.0077 (11)	-0.0005 (10)
C7	0.0182 (12)	0.0224 (13)	0.0211 (12)	-0.0005 (10)	0.0046 (10)	-0.0008 (10)
C8	0.0208 (12)	0.0188 (12)	0.0227 (12)	0.0003 (10)	0.0044 (11)	-0.0027 (10)
C9	0.0184 (12)	0.0222 (13)	0.0220 (12)	-0.0015 (10)	0.0048 (11)	-0.0036 (10)
C10	0.0217 (12)	0.0184 (12)	0.0241 (12)	-0.0017 (10)	0.0091 (11)	-0.0020 (10)
C11	0.0329 (14)	0.0202 (13)	0.0321 (14)	-0.0029 (11)	0.0172 (13)	-0.0030 (11)
C12	0.0224 (13)	0.0215 (13)	0.0262 (13)	-0.0012 (10)	0.0113 (11)	-0.0002 (10)
C13	0.0209 (12)	0.0231 (13)	0.0210 (12)	-0.0017 (10)	0.0094 (11)	-0.0010 (10)
C14	0.0237 (13)	0.0222 (13)	0.0205 (12)	-0.0039 (10)	0.0106 (11)	-0.0051 (10)
C15	0.0230 (13)	0.0269 (13)	0.0182 (12)	0.0006 (11)	0.0040 (11)	-0.0019 (10)
C16	0.0301 (14)	0.0316 (14)	0.0182 (13)	-0.0013 (11)	0.0096 (12)	0.0012 (11)
C17	0.0310 (14)	0.0332 (15)	0.0287 (14)	-0.0007 (12)	0.0189 (13)	-0.0057 (12)
C18	0.0296 (14)	0.0305 (14)	0.0298 (14)	0.0035 (11)	0.0161 (13)	-0.0047 (11)

C19	0.0263 (13)	0.0237 (13)	0.0240 (13)	-0.0030 (10)	0.0119 (12)	-0.0039 (10)
C20	0.0196 (12)	0.0209 (12)	0.0269 (13)	0.0007 (10)	0.0137 (11)	-0.0015 (10)
C21	0.0285 (14)	0.0250 (13)	0.0283 (14)	-0.0027(11)	0.0106 (12)	-0.0017 (11)
C22	0.0309 (14)	0.0321 (15)	0.0223 (13)	0.0011 (11)	0.0062 (12)	0.0043 (11)
C23	0.0279 (14)	0.0249 (13)	0.0311 (14)	-0.0021 (11)	0.0120 (12)	0.0040 (11)
C24	0.0296 (14)	0.0256 (14)	0.0312 (15)	-0.0059 (11)	0.0119 (12)	-0.0043 (11)
C25	0.0227 (13)	0.0306 (14)	0.0174 (12)	-0.0039 (11)	0.0052 (11)	-0.0025 (10)
Geometric param	neters (Å, °)					
S1—C11		1.724 (2)	C10–	C11	1.36	68 (3)
S1—C12		1.736 (2)	C11–	-H11A	0.93	00
O1—C2		1.375 (3)	C13–	C14	1.48	35 (3)
O1—C1		1.386 (3)	C13–	-C20	1.49	95 (3)
O2—C1		1.205 (3)	C14–	-C15	1.39	2 (3)
N1-C12		1.300 (3)	C14-	C19	1.40	94 (3)
N1-C10		1.402 (3)	C15–	C16	1.38	32 (3)
N2—C12		1.370 (3)	C15–	-H15A	0.93	00
N2—N3		1.375 (2)	C16–	C17	1.38	32 (3)
N2—H1N2		0.91 (3)	C16–	-H16A	0.93	00
N3—C13		1.292 (3)	C17–	-C18	1.38	35 (3)
C1—C9		1.470 (3)	C17–	–H17A	0.93	00
C2—C3		1.385 (3)	C18–	-C19	1.38	88 (3)
C2—C7		1.391 (3)	C18–	-H18A	0.93	00
C3—C4		1.382 (4)	C19–	-H19A	0.93	00
С3—НЗА		0.9300	C20–	-C25	1.38	37 (3)
C4—C5		1.380 (4)	C20–	C20—C21 1.39		91 (3)
C4—H4A		0.9300	C21–	C21—C22 1.382 (3)		32 (3)
C5—C6		1.378 (3)	C21–	C21—H21A 0.9300		00
C5—H5A		0.9300	C22–	-C23	1.39	91 (4)
C6—C7		1.400 (3)	C22–	-H22A	0.93	00
С6—Н6А		0.9300	C23–	C24	1.38	32 (4)
С7—С8		1.430 (3)	C23–	-H23A	0.93	00
С8—С9		1.346 (3)	C24–	-C25	1.38	34 (3)
C8—H8A		0.9300	C24–	-H24A	0.93	00
C9—C10		1.464 (3)	C25–	-H25A	0.93	00
C11—S1—C12		88.29 (11)	N1—	C12—S1	116.	69 (18)
C2—O1—C1		123.27 (19)	N2—	C12—S1	119.	88 (16)
C12—N1—C10		109.20 (19)	N3—	C13—C14	115.	7 (2)
C12—N2—N3		116.31 (19)	N3—	C13—C20	125	.68 (19)
C12—N2—H1N2		119.7 (16)	C14-	-C13-C20	118.	54 (19)
N3—N2—H1N2		119.8 (16)	C15–	-C14C19	118.	6 (2)
C13—N3—N2		118.33 (19)	C15-	C14C13	121	.4 (2)
O2—C1—O1		116.4 (2)	C19–	-C14C13	119	8 (2)
O2—C1—C9		126.8 (2)	C16–	-C15-C14	120	.8 (2)
O1—C1—C9		116.8 (2)	C16–	-C15—H15A	119.	6
O1—C2—C3		118.1 (2)	C14–	-C15—H15A	119.	6
O1—C2—C7		120.3 (2)	C17–	-C16-C15	120	.0 (2)
C3—C2—C7		121.6 (2)	C17–	-C16-H16A	120	.0

C4—C3—C2	118.5 (2)	С15—С16—Н16А	120.0
С4—С3—Н3А	120.7	C16—C17—C18	120.4 (2)
С2—С3—Н3А	120.7	С16—С17—Н17А	119.8
C5—C4—C3	121.3 (2)	С18—С17—Н17А	119.8
С5—С4—Н4А	119.3	C17—C18—C19	119.7 (2)
C3—C4—H4A	119.3	C17—C18—H18A	120.1
C6—C5—C4	119.6 (2)	C19-C18-H18A	120.1
С6—С5—Н5А	120.2	C18—C19—C14	120.5 (2)
С4—С5—Н5А	120.2	C18—C19—H19A	119.8
C5—C6—C7	120.8 (2)	С14—С19—Н19А	119.8
С5—С6—Н6А	119.6	C25—C20—C21	119.0 (2)
С7—С6—Н6А	119.6	C25—C20—C13	120.1 (2)
C2—C7—C6	118.2 (2)	C21—C20—C13	120.8 (2)
C2—C7—C8	117.8 (2)	C22—C21—C20	120.4 (2)
C6—C7—C8	124.1 (2)	C22—C21—H21A	119.8
C9—C8—C7	122.7 (2)	C20-C21-H21A	119.8
С9—С8—Н8А	118.6	C21—C22—C23	120.2 (2)
С7—С8—Н8А	118.6	C21—C22—H22A	119.9
C8—C9—C10	121.4 (2)	C23—C22—H22A	119.9
C8—C9—C1	119.2 (2)	C24—C23—C22	119.6 (2)
C10—C9—C1	119.4 (2)	C24—C23—H23A	120.2
C11—C10—N1	115.1 (2)	С22—С23—Н23А	120.2
C11—C10—C9	127.9 (2)	C23—C24—C25	120.1 (2)
N1-C10-C9	116.96 (19)	C23—C24—H24A	120.0
C10-C11-S1	110.66 (18)	C25—C24—H24A	120.0
C10-C11-H11A	124.7	C24—C25—C20	120.7 (2)
S1-C11-H11A	124.7	C24—C25—H25A	119.6
N1—C12—N2	123.4 (2)	C20—C25—H25A	119.6
C12—N2—N3—C13	174.6 (2)	C10—N1—C12—N2	-176.8 (2)
C2	-179.9 (2)	C10-N1-C12-S1	1.2 (3)
C2	0.3 (4)	N3—N2—C12—N1	-174.4 (2)
C1—O1—C2—C3	179.2 (3)	N3—N2—C12—S1	7.6 (3)
C1—O1—C2—C7	-0.7 (4)	C11—S1—C12—N1	-1.5 (2)
O1—C2—C3—C4	-178.3 (3)	C11—S1—C12—N2	176.6 (2)
C7—C2—C3—C4	1.6 (4)	N2-N3-C13-C14	-179.6 (2)
C2—C3—C4—C5	-1.1 (5)	N2—N3—C13—C20	-2.6 (4)
C3—C4—C5—C6	0.2 (4)	N3—C13—C14—C15	-22.3 (3)
C4—C5—C6—C7	0.3 (4)	C20-C13-C14-C15	160.5 (2)
O1—C2—C7—C6	178.9 (2)	N3—C13—C14—C19	152.8 (2)
C3—C2—C7—C6	-1.0 (4)	C20—C13—C14—C19	-24.5 (3)
O1—C2—C7—C8	0.2 (4)	C19—C14—C15—C16	-0.2 (4)
C3—C2—C7—C8	-179.6 (3)	C13—C14—C15—C16	174.9 (2)
C5—C6—C7—C2	0.0 (4)	C14—C15—C16—C17	0.1 (4)
C5—C6—C7—C8	178.6 (2)	C15—C16—C17—C18	-0.3 (4)
C2—C7—C8—C9	0.7 (4)	C16—C17—C18—C19	0.5 (4)
C6—C7—C8—C9	-177.9 (2)	C17—C18—C19—C14	-0.6 (4)
C7—C8—C9—C10	178.9 (2)	C15—C14—C19—C18	0.5 (4)
C7—C8—C9—C1	-1.1 (4)	C13—C14—C19—C18	-174.7 (2)
O2—C1—C9—C8	-179.1 (3)	N3—C13—C20—C25	117.4 (3)

0.6 (4)	C14—C13—C20—C25	-65.7 (3)
0.9 (4)	N3-C13-C20-C21	-66.3 (3)
-179.4 (2)	C14—C13—C20—C21	110.6 (3)
-0.1 (3)	C25—C20—C21—C22	2.0 (3)
178.9 (2)	C13—C20—C21—C22	-174.3 (2)
176.1 (3)	C20-C21-C22-C23	-0.5 (4)
-3.9 (4)	C21—C22—C23—C24	-1.3 (4)
-2.8 (3)	C22—C23—C24—C25	1.4 (4)
177.2 (2)	C23—C24—C25—C20	0.1 (4)
-1.0 (3)	C21—C20—C25—C24	-1.9 (3)
-179.9 (2)	C13-C20-C25-C24	174.5 (2)
1.3 (2)		
	0.6 (4) 0.9 (4) -179.4 (2) -0.1 (3) 178.9 (2) 176.1 (3) -3.9 (4) -2.8 (3) 177.2 (2) -1.0 (3) -179.9 (2) 1.3 (2)	0.6 (4) $C14-C13-C20-C25$ $0.9 (4)$ $N3-C13-C20-C21$ $-179.4 (2)$ $C14-C13-C20-C21$ $-0.1 (3)$ $C25-C20-C21-C22$ $178.9 (2)$ $C13-C20-C21-C22$ $176.1 (3)$ $C20-C21-C22-C23$ $-3.9 (4)$ $C21-C22-C23-C24$ $-2.8 (3)$ $C22-C23-C24-C25$ $177.2 (2)$ $C23-C24-C25-C20$ $-1.0 (3)$ $C21-C20-C25-C24$ $-179.9 (2)$ $C13-C20-C25-C24$ $1.3 (2)$ $C14-C20-C25-C24$

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14	4–C19 and C2–C7 b	enzene rings, resp	ectively.	
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C6—H6A···O1 ⁱ	0.93	2.46	3.377 (3)	168.
C11—H11A…O2	0.93	2.30	2.857 (3)	118.
C21—H21A···Cg1 ⁱⁱ	0.93	2.49	3.387 (3)	162
C24—H24A···Cg2 ⁱⁱⁱ	0.93	2.78	3.536 (3)	139
Symmetry codes: (i) $-x$, $y-1/2$, $-z+5/2$; (ii) $-x$	x+1, -y, -z+2; (iii) $-x$, <i>-y</i> , <i>-z</i> +2.		

